460 research outputs found

    The Prostate Health Index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population

    Get PDF
    Both multi-parametric MRI (mpMRI) and the Prostate Health Index (PHI) have shown promise in predicting a positive biopsy in men with suspected prostate cancer. Here we investigated the value of combining both tests in men requiring a repeat biopsy. PHI scores were measured in men undergoing re-biopsy with an mpMRI image-guided transperineal approach (n = 279, 94 with negative mpMRIs). The PHI was assessed for ability to add value to mpMRI in predicting all or only significant cancers (Gleason ≥7). In this study adding PHI to mpMRI improved overall and significant cancer prediction (AUC 0.71 and 0.75) compared to mpMRI + PSA alone (AUC 0.64 and 0.69 respectively). At a threshold of ≥35, PHI + mpMRI demonstrated a NPV of 0.97 for excluding significant tumours. In mpMRI negative men, the PHI again improved prediction of significant cancers; AUC 0.76 vs 0.63 (mpMRI + PSA). Using a PHI≥35, only 1/21 significant cancers was missed and 31/73 (42%) men potentially spared a re-biopsy (NPV of 0.97, sensitivity 0.95). Decision curve analysis demonstrated clinically relevant utility of the PHI across threshold probabilities of 5-30%. In summary, the PHI adds predictive performance to image-guided detection of clinically significant cancers and has particular value in determining re-biopsy need in men with a negative mpMRI

    Cardiovascular Applications of Hyperpolarized MRI

    Get PDF
    Many applications of MRI are limited by an inherently low sensitivity. Previous attempts to overcome this insensitivity have focused on the use of MRI systems with stronger magnetic fields. However, the gains that can be achieved in this way are relatively small and increasing the magnetic field invariably leads to greater technical challenges. More recently, the development of a range of techniques, which can be gathered under the umbrella term of “hyperpolarization,” has offered potential solutions to the low sensitivity. Hyperpolarization techniques have been demonstrated to temporarily increase the signal available in an MRI experiment by as much as 100,000-fold. This article outlines the main hyperpolarization techniques that have been proposed and explains how they can increase MRI signals. With particular emphasis on the emerging technique of dynamic nuclear polarization, the existing preclinical cardiovascular applications are reviewed and the potential for clinical translation is discussed

    Removing rician bias in diffusional kurtosis of the prostate using real-data reconstruction.

    Get PDF
    Purpose To compare prostate diffusional kurtosis imaging (DKI) metrics generated using phase-corrected real data with those generated using magnitude data with and without noise compensation (NC).Methods Diffusion-weighted images were acquired at 3T in 16 prostate cancer patients, measuring 6 b-values (0-1500 s/mm2 ), each acquired with 6 signal averages along 3 diffusion directions, with noise-only images acquired to allow NC. In addition to conventional magnitude averaging, phase-corrected real data were averaged in an attempt to reduce rician noise-bias, with a range of phase-correction low-pass filter (LPF) sizes (8-128 pixels) tested. Each method was also tested using simulations. Pixelwise maps of apparent diffusion (D) and apparent kurtosis (K) were calculated for magnitude data with and without NC and phase-corrected real data. Average values were compared in tumor, normal transition zone (NTZ), and normal peripheral zone (NPZ).Results Simulations indicated LPF size can strongly affect K metrics, where 64-pixel LPFs produced accurate metrics. Relative to metrics estimated from magnitude data without NC, median NC K were lower (P < 0.0001) by 6/11/8% in tumor/NPZ/NTZ, 64-LPF real-data K were lower (P < 0.0001) by 4/10/7%, respectively.Conclusion Compared with magnitude data with NC, phase-corrected real data can produce similar K, although the choice of phase-correction LPF should be chosen carefully

    Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design.

    Get PDF
    BACKGROUND: The detection of occult bone metastases is a key factor in determining the management of patients with renal cell carcinoma (RCC), especially when curative surgery is considered. This prospective study assessed the sensitivity of (18)F-labelled sodium fluoride in conjunction with positron emission tomography/computed tomography ((18)F-NaF PET/CT) for detecting RCC bone metastases, compared with conventional imaging by bone scintigraphy or CT. PATIENTS AND METHODS: An adaptive two-stage trial design was utilized, which was stopped after the first stage due to statistical efficacy. Ten patients with stage IV RCC and bone metastases were imaged with (18)F-NaF PET/CT and (99m)Tc-labelled methylene diphosphonate ((99m)Tc-MDP) bone scintigraphy including pelvic single photon emission computed tomography (SPECT). Images were reported independently by experienced radiologists and nuclear medicine physicians using a 5-point scoring system. RESULTS: Seventy-seven lesions were diagnosed as malignant: 100% were identified by (18)F-NaF PET/CT, 46% by CT and 29% by bone scintigraphy/SPECT. Standard-of-care imaging with CT and bone scintigraphy identified 65% of the metastases reported by (18)F-NaF PET/CT. On an individual patient basis, (18)F-NaF PET/CT detected more RCC metastases than (99m)Tc-MDP bone scintigraphy/SPECT or CT alone (P = 0.007). The metabolic volumes, mean and maximum standardized uptake values (SUV mean and SUV max) of the malignant lesions were significantly greater than those of the benign lesions (P < 0.001). CONCLUSIONS: (18)F-NaF PET/CT is significantly more sensitive at detecting RCC skeletal metastases than conventional bone scintigraphy or CT. The detection of occult bone metastases could greatly alter patient management, particularly in the context when standard-of-care imaging is negative for skeletal metastases.This work was supported by Cancer Research UK [grant number C19212/A16628]. The authors also received research support from the National Institute of Health Research Cambridge Biomedical Research Centre, Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester, and the Cambridge Experimental Cancer Medicine Centre. The research has also been partly funded by a generous donation from the family and friends of a patient.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/annonc/mdv28

    A computational model of open-irrigated radiofrequency catheter ablation accounting for mechanical properties of the cardiac tissue

    Get PDF
    Radiofrequency catheter ablation (RFCA) is an effective treatment for cardiac arrhythmias. Although generally safe, it is not completely exempt from the risk of complications. The great flexibility of computational models can be a major asset in optimizing interventional strategies, if they can produce sufficiently precise estimations of the generated lesion for a given ablation protocol. This requires an accurate description of the catheter tip and the cardiac tissue. In particular, the deformation of the tissue under the catheter pressure during the ablation is an important aspect that is overlooked in the existing literature, that resorts to a sharp insertion of the catheter into an undeformed geometry. As the lesion size depends on the power dissipated in the tissue, and the latter depends on the percentage of the electrode surface in contact with the tissue itself, the sharp insertion geometry has the tendency to overestimate the lesion obtained, especially when a larger force is applied to the catheter. In this paper we introduce a full 3D computational model that takes into account the tissue elasticity, and is able to capture the tissue deformation and realistic power dissipation in the tissue. Numerical results in FEniCS-HPC are provided to validate the model against experimental data, and to compare the lesions obtained with the new model and with the classical ones featuring a sharp electrode insertion in the tissue.La Caixa 2016 PhD grant to M. Leoni, and Abbott non-conditional grant to J.M. Guerra Ramo

    Reproducibility of acute pulmonary vein isolation guided by the ablation index.

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) ablation outcome is still operator dependent. Ablation Index (AI) is a new lesion quality marker that has been demonstrated to allow acute durable pulmonary vein (PV) isolation followed by a high single-procedure arrhythmia-free survival. This prospective, multicenter study was designed to evaluate the reproducibility of acute PV isolation guided by the AI. METHODS: A total of 490 consecutive patients with paroxysmal (80.4%) and persistent AF underwent first time PV encircling and were divided in four study groups according to operator preference in choosing the ablation catheter (a contact force [ST] or contact force surround flow [STSF] catheter) and the AI setting (330 at posterior and 450 at anterior wall or 380 at posterior and 500 at anterior wall). Radiofrequency was delivered targeting interlesion distance ≤6 mm. RESULTS: The rate of first-pass PV isolation (ST330 90 ± 16%, ST380 87 ± 19%, STSF330 90 ± 17%, STSF380 91 ± 15%, P = .585) was similar among the four study groups, whereas procedure (ST330 129 ± 44 minutes, ST380 144 ± 44 minutes, STSF330 120 ± 72 minutes, STSF380 125 ± 73 minutes, P < .001) and fluoroscopy time (ST330 542 ± 285 seconds, ST380 540 ± 416 seconds, STSF330 257 ± 356 seconds, STSF380 379 ± 454 seconds, P < 0.001) significantly differed. The difference in the rate of first-pass isolation was not statistical different (P = .06) among the 12 operators that performed at least 15 procedures. CONCLUSIONS: An ablation protocol respecting strict criteria for contiguity and quality lesion results in high and comparable rate of acute PV isolation among operator performing ablation with different catheters, AI settings, procedure, and fluoroscopy times
    corecore